Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes.
نویسندگان
چکیده
The motion of a rotating helical body in a viscoelastic fluid is considered. In the case of force-free swimming, the introduction of viscoelasticity can either enhance or retard the swimming speed and locomotive efficiency, depending on the body geometry, fluid properties, and the body rotation rate. Numerical solutions of the Oldroyd-B equations show how previous theoretical predictions break down with increasing helical radius or with decreasing filament thickness. Helices of large pitch angle show an increase in swimming speed to a local maximum at a Deborah number of order unity. The numerical results show how the small-amplitude theoretical calculations connect smoothly to the large-amplitude experimental measurements.
منابع مشابه
Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
Many small organisms self-propel in viscous fluids using travelling wave-like deformations of their bodies or appendages. Examples include small nematodes moving through soil using whole-body undulations or spermatozoa swimming through mucus using flagellar waves. When self-propulsion occurs in a non-Newtonian fluid, one fundamental question is whether locomotion will occur faster or slower tha...
متن کاملSwimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers
Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswim...
متن کاملFlow of Viscoelastic Fluid through a Helical Coil
The study aims at quantifying the effect of fluid elasticity on frictional pressure drop for the flow of viscoelastic fluid through a helical coil. Aqueous solutions of polyacrylamide (PAA) in the concentration range 0.25 %–0.5 % (wt/vol.) were used as test fluids. The fluids were characterized using dynamic rheometer under rotational and oscillatory modes. The rheological study depicts that th...
متن کاملComparative hydrodynamics of bacterial polymorphism.
Most bacteria swim through fluids by rotating helical flagella which can take one of 12 distinct polymorphic shapes, the most common of which is the normal form used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencie...
متن کاملForce-free swimming of a model helical flagellum in viscoelastic fluids.
We precisely measure the force-free swimming speed of a rotating helix in viscous and viscoelastic fluids. The fluids are highly viscous to replicate the low Reynolds number environment of microorganisms. The helix, a macroscopic scale model for the bacterial flagellar filament, is rigid and rotated at a constant rate while simultaneously translated along its axis. By adjusting the translation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 6 شماره
صفحات -
تاریخ انتشار 2013